首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   85篇
  2021年   6篇
  2018年   6篇
  2016年   8篇
  2015年   17篇
  2014年   17篇
  2013年   21篇
  2012年   17篇
  2011年   15篇
  2010年   7篇
  2009年   10篇
  2008年   27篇
  2007年   23篇
  2006年   18篇
  2005年   13篇
  2004年   18篇
  2003年   17篇
  2002年   30篇
  2001年   22篇
  2000年   18篇
  1999年   10篇
  1998年   7篇
  1997年   6篇
  1996年   12篇
  1995年   9篇
  1994年   7篇
  1993年   6篇
  1992年   26篇
  1991年   21篇
  1990年   25篇
  1989年   16篇
  1988年   11篇
  1987年   16篇
  1986年   16篇
  1985年   13篇
  1984年   18篇
  1983年   12篇
  1982年   8篇
  1981年   12篇
  1980年   14篇
  1979年   8篇
  1978年   10篇
  1977年   11篇
  1976年   11篇
  1975年   14篇
  1974年   11篇
  1973年   6篇
  1972年   9篇
  1970年   5篇
  1969年   7篇
  1966年   4篇
排序方式: 共有692条查询结果,搜索用时 125 毫秒
61.
Leukocyte-platelet interaction is important in mediating leukocyte adhesion to a thrombus and leukocyte recruitment to a site of vascular injury. This interaction is mediated at least in part by the beta2-integrin Mac-1 (CD11b/CD18) and its counter-receptor on platelets, glycoprotein Ibalpha (GPIbalpha). High molecular weight kininogen (HK) was previously shown to interact with both GPIbalpha and Mac-1 through its domains 3 and 5, respectively. In this study we investigated the ability of HK to interfere with the leukocyte-platelet interaction. In a purified system, HK binding to GPIbalpha was inhibited by HK domain 3 and the monoclonal antibody (mAb) SZ2, directed against the epitope 269-282 of GPIbalpha, whereas mAb AP1, directed to the region 201-268 of GPIbalpha had no effect. In contrast, mAb AP1 inhibited the Mac-1-GPIbalpha interaction. Binding of GPIbalpha to Mac-1 was enhanced 2-fold by HK. This effect of HK was abrogated in the presence of HK domains 3 or 5 or peptides from the 475-497 region of the carboxyl terminus of domain 5 as well as in the presence of mAb SZ2 but not mAb AP1. Whereas no difference in the affinity of the Mac-1-GPIbalpha interaction was observed in the absence or presence of HK, maximal binding of GPIbalpha to Mac-1 doubled in the presence of HK. Moreover, HK/HKa increased the Mac-1-dependent adhesion of myelomonocytic U937 cells and K562 cells transfected with Mac-1 to immobilized GPIbalpha or to GPIbalpha-transfected Chinese hamster ovary cells. Finally, Mac-1-dependent adhesion of neutrophils to surface-adherent platelets was enhanced by HK. Thus, HK can bridge leukocytes with platelets by interacting via its domain 3 with GPIbalpha and via its domain 5 with Mac-1 thereby augmenting the Mac-1-GPIbalpha interaction. These distinct molecular interactions of HK with leukocytes and platelets contribute to the regulation of the adhesive behavior of vascular cells and provide novel molecular targets for reducing atherothrombotic pathologies.  相似文献   
62.
We report the purification of a presynaptic "particle web" consisting of approximately 50 nm pyramidally shaped particles interconnected by approximately 100 nm spaced fibrils. This is the "presynaptic grid" described in early EM studies. It is completely soluble above pH 8, but reconstitutes after dialysis against pH 6. Interestingly, reconstituted particles orient and bind PSDs asymmetrically. Mass spectrometry of purified web components reveals major proteins involved in the exocytosis of synaptic vesicles and in membrane retrieval. Our data support the idea that the CNS synaptic junction is organized by transmembrane adhesion molecules interlinked in the synaptic cleft, connected via their intracytoplasmic domains to the presynaptic web on one side and to the postsynaptic density on the other. The CNS synaptic junction may therefore be conceptualized as a complicated macromolecular scaffold that isostatically bridges two closely aligned plasma membranes.  相似文献   
63.
High arterial blood oxygen tension increases vascular resistance, possibly related to an interaction between reactive oxygen species and endothelium-derived vasoactive factors. Vitamin C is a potent antioxidant capable of reversing endothelial dysfunction due to increased oxidant stress. We tested the hypotheses that hyperoxic vasoconstriction would be prevented by vitamin C, and that acetylcholine-mediated vasodilation would be blunted by hyperoxia and restored by vitamin C. Venous occlusion strain gauge plethysmography was used to measure forearm blood flow (FBF) in 11 healthy subjects and 15 congestive heart failure (CHF) patients, a population characterized by endothelial dysfunction and oxidative stress. The effect of hyperoxia on FBF and derived forearm vascular resistance (FVR) at rest and in response to intra-arterial acetylcholine was recorded. In both healthy subjects and CHF patients, hyperoxia-mediated increases in basal FVR were prevented by the coinfusion of vitamin C. In healthy subjects, hyperoxia impaired the acetylcholine-mediated increase in FBF, an effect also prevented by vitamin C. In contrast, hyperoxia had no effect on verapamil-mediated increases in FBF. In CHF patients, hyperoxia did not affect FBF responses to acetylcholine or verapamil. The addition of vitamin C during hyperoxia augmented FBF responses to acetylcholine. These results suggest that hyperoxic vasoconstriction is mediated by oxidative stress. Moreover, hyperoxia impairs acetylcholine-mediated vasodilation in the setting of intact endothelial function. These effects of hyperoxia are prevented by vitamin C, providing evidence that hyperoxia-derived free radicals impair the activity of endothelium-derived vasoactive factors.  相似文献   
64.
BLG/7 transgenic mice express an ovine beta-lactoglobulin transgene during lactation. Unusually, transgene expression levels in milk differ between siblings. This variable expression is due to variegated transgene expression in the mammary gland and is reminiscent of position-effect variegation. The BLG/7 line was created and maintained on a mixed CBA x C57BL/6 background. We have investigated the effect on transgene expression of backcrossing for 13 generations into these backgrounds. Variable transgene expression was observed in all populations examined, confirming that it is an inherent property of the transgene array at its site of integration. There were also strain-specific effects on transgene expression that appear to be independent of the inherent variegation. The transgene, compared to endogenous milk protein genes, is specifically susceptible to inbreeding depression. Outcrossing restored transgene expression levels to that of the parental population; thus suppression was not inherited. Finally, no generation-dependent decrease in mean expression levels was observed in the parental population. Thus, although the BLG/7 transgene is expressed in a variegated manner, there was no generation-associated accumulated silencing of transgene expression.  相似文献   
65.
The influence of mu-selective opioid agonists on neonatal thermoregulatory mechanisms has received little attention. Opioid treatment in adult subjects can cause either hyper- or hypothermia, depending on the experimental conditions, the strain of rat used, and the dose and route of administration of the drug. The present study assessed the effect of two mu opioid agonists on body temperature in neonatal Wistar rats aged 2 to 13 days. Rat pups were administered either saline or one of the two mu-selective opioid agonists, dermorphin (0.4 mg/kg) or fentanyl (0.06 mg/kg), by subcutaneous injection. Continuous rectal temperatures were measured both prior to and following drug or saline injection in freely moving, conscious animals. Ambient temperature in a plethysmograph chamber was maintained within or close to the thermoneutral zone for pups (32 degrees C). To distinguish between mu-1 and mu-2 effects, all animals received either saline or 10 mg/kg of the irreversible mu-1 antagonist naloxonazine (NALZ) 1 day prior to agonist administration. NALZ on its own had no effect on body temperature. Dermorphin and fentanyl both caused a fall in body temperature in pups of all age groups. The temperature decreases ranged from 0.8 degrees -2.2 degrees C. These opioid-induced changes were inhibited by NALZ pretreatment. Although there was no evidence for endogenous mu-1 opioid activity, this study indicated that stimulation of mu-1 opioid receptors causes a decrease in body temperature in conscious, unrestrained neonatal rats under or close to thermoneutral conditions.  相似文献   
66.
67.
Brosius JL  Colman RF 《Biochemistry》2002,41(7):2217-2226
Tetrameric adenylosuccinate lyase (ASL) of Bacillus subtilis catalyzes the cleavage of adenylosuccinate to form AMP and fumarate. We previously reported that two distinct subunits contribute residues to each active site, including the His68 and His89 from one and His141 from a second subunit [Brosius, J. L., and Colman, R. F. (2000) Biochemistry 39, 13336-13343]. Glu(275) is 2.8 A from His141 in the ASL crystal structure, and Lys268 is also in the active site region; Glu275 and Lys268 come from a third, distinct subunit. Using site-directed mutagenesis, we have replaced Lys268 by Arg, Gln, Glu, and Ala, with specific activities of the purified mutant enzymes being 0.055, 0.00069, 0.00028, and 0.0, respectively, compared to 1.56 units/mg for wild-type (WT) enzyme. Glu275 was substituted by Gln, Asp, Ala, and Arg; none of these homogeneous mutant enzymes has detectable activity. Circular dichroism and light scattering reveal that neither the secondary structure nor the oligomeric state of the Lys268 mutant enzymes has been perturbed. Native gel electrophoresis and circular dichroism indicate that the Glu275 mutant enzymes are tetramers, but their conformation is altered slightly. For K268R, the K(m)s for all substrates are similar to WT enzyme. Binding studies using [2-3H]-adenylosuccinate reveal that none of the Glu275 mutant enzymes, nor inactive K268A, can bind substrate. We propose that Lys268 participates in binding substrate and that Glu275 is essential for catalysis because of its interaction with His141. Incubation of H89Q with K268Q or E275Q leads to restoration of up to 16% WT activity, while incubation of H141Q with K268Q or E275Q results in 6% WT activity. These complementation studies provide the first functional evidence that a third subunit contributes residues to each intersubunit active site of ASL. Thus, adenylosuccinate lyase has four active sites per enzyme tetramer, each of which is formed from regions of three subunits.  相似文献   
68.
Sequence alignment of pig mitochondrial NADP-dependent isocitrate dehydrogenase with eukaryotic (human, rat, and yeast) and Escherichia coli isocitrate dehydrogenases reveals that Tyr316 is completely conserved and is equivalent to the E. coli Tyr345, which interacts with the 2'-phosphate of NADP in the crystal structure [Hurley et al., Biochemistry 30 (1991) 8671-8678]. Lys321 is also completely conserved in the five isocitrate dehydrogenases. Either an arginine or lysine residue is found among the enzymes from other species at the position corresponding to the pig enzyme Arg314. While Arg323 is not conserved among all species, its proximity to the coenzyme site makes it a good candidate for investigation. The importance of these four amino acids to the function of pig mitochondrial NADP-isocitrate dehydrogenase was studied by site-directed mutagenesis. Mutants (R314Q, Y316F, Y316L, K321Q, and R323Q) were generated by a megaprimer polymerase chain reaction method. Wild-type and mutant enzymes were expressed in E. coli and purified to homogeneity. All mutant and wild-type enzymes exhibited comparable molecular weights indicative of the dimeric enzyme. Mutations do not cause an appreciable change in enzyme secondary structure as revealed by circular dichroism measurements. The kinetic parameters (V(max) and K(M) values) of K321Q and R323Q are similar to those of wild-type, indicating that Lys321 and Arg323 are not involved in enzyme function. R314Q exhibits a 10-fold increase in K(M) for NADP as compared to that of wild-type, while they have comparable V(max) values. These results suggest that Arg314 contributes to the affinity between the enzyme and NADP. The hydroxyl group of Tyr316 is not required for enzyme function since Y316F exhibits similar kinetic parameters to those of wild-type. Y316L shows a 4-fold increase in K(M) for NADP and a decrease in V(max) as compared to wild-type, suggesting that the aromatic ring of the Tyr of isocitrate dehydrogenase contributes to the affinity for coenzyme, as well as to catalysis. The K(i) for NAD of R314Q, Y316F, and Y316L is comparable to that of wild-type, indicating that the Arg314 and Tyr316 may be located near the 2'-phosphate of enzyme-bound NADP.  相似文献   
69.
The relationship between adhesive interactions across the synaptic cleft and synaptic function has remained elusive. At certain CNS synapses, pre- to postsynaptic adhesion is mediated at least in part by neural (N-) cadherin. Here, we demonstrate that upon depolarization of hippocampal neurons in culture by K+ treatment, or application of NMDA or alpha-latrotoxin, synaptic N-cadherin dimerizes and becomes markedly protease resistant. These properties are indices of strong, stable, enhanced cadherin-mediated intercellular adhesion. N-cadherin retained protease resistance for at least 2 hr after recovery, while other surface molecules, including other cadherins, were completely degraded. The acquisition of protease resistance and dimerization of N-cadherin is not dependent on new protein synthesis, nor is it accompanied by internalization of N-cadherin. By immunocytochemistry, we found that high K+ selectively induces surface dispersion of N-cadherin, which, after recovery, returns to synaptic puncta. N-cadherin dispersion under K+ treatment parallels the rapid expansion of the presynaptic membrane consequent to the massive vesicle fusion that occurs with this type of depolarization. In contrast, with NMDA application, N-cadherin does not disperse but does acquire enhanced protease resistance and dimerizes. Our data strongly suggest that synaptic adhesion is dynamically and locally controlled, and modulated by synaptic activity.  相似文献   
70.
Brosius JL  Colman RF 《Biochemistry》2000,39(44):13336-13343
Adenylosuccinate lyase of Bacillus subtilis is a tetrameric enzyme which catalyzes the cleavage of adenylosuccinate to AMP and fumarate. We have mutated His(89), one of three conserved histidines, to Gln, Ala, Glu, and Arg. The enzymes were expressed in Escherichia coli and purified to homogeneity. As compared to a specific activity of 1. 56 micromol of adenylosuccinate converted/min/mg protein for wild-type enzyme, the mutant enzymes exhibit specific activities of 0.0225, 0.0036, 0.0036, and 0.0009 for H89Q, H89A, H89E, and H89R, respectively. Circular dichroism and FPLC gel filtration reveal that mutant enzymes have a similar conformation and oligomeric state to that of wild-type enzyme. In H89Q, the K(M) for adenylosuccinate increases slightly to 2.5-fold that of wild-type, the K(M) for fumarate is elevated 3.3-fold, and the K(M) for AMP is 13 times higher than that observed in wild-type enzyme. The catalytic efficiency of the H89Q enzyme is compromised, with k(cat)/K(M) reduced 174-fold in the direction of AMP formation. These data suggest that His(89) plays a role in both the binding of the AMP portion of the substrate and in correctly orienting the substrate for catalysis. Incubation of H89Q with inactive H141Q enzyme [Lee, T. T., Worby, C., Bao, Z.-Q., Dixon, J. E., and Colman, R. F. (1999) Biochemistry 38, 22-32] leads to a 30-fold increase in activity. This intersubunit complementation indicates that His(89) and His(141) from different subunits participate in the active site and that both are required for catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号